ICE, Power Train & Energy Storage

As an introduction of the master program, it’s first module provides a review about the requirements, approaches, and challenges of sustainable future mobility systems. Those are given by social, environmental, economic, political, and user needs. They foster the creation of new solutions on different levels: traffic, energy, and data infrastructure, traffic, mobility behavior, driver vehicle interaction, vehicle, vehicle subsystems and components, functional elements and new materials. New vehicle and traffic concepts are based on that.

The module then refers to drive systems and their interaction, describes energy carrier, and energy storage starting with alternative fuels and modern internal combustion engines followed by storage systems for electrical drive systems. The lecture ‘Energy conversion’ presents conventional and new power train systems. The module also covers the transmission from the wheel to the road and is concluded by today’s advanced control systems.

Vehicle Driver Interaction

Modern vehicles are becoming more and more intelligent. Sensors and cognitive control units detect and communicate with the environment, recognize other vehicles and other road users, interpret and predict their behavior and improve dramatically road safety. Based on detailed road, infrastructure and traffic data and using predictive green routing and vehicle operation management a comfortable, energy and time efficient drive is realized.

Many components of actual and future cars are coming along with properties which differ significantly from those in classical vehicles as high torque at zero speed, limited cruising range, need for additional battery charging infrastructure and cost accounting systems, high voltage safety requirements, different noise and vibration, autonomous actions etc. Consequently new vehicle concepts and operation strategies are needed which also affects the human machine interaction. In the vehicle many control
units are used. The most important control system in the car is the driver. Understanding its sensation, cognition and action is very important to create attractive vehicle concepts and to get the driver’s acceptance.

This module addresses different aspects of the driver vehicle interaction. The drivability deals with the usability of a vehicle by the driver including ease of use, fulfillment of driver’s expectations concerning safe, comfortable and efficient drive, degree of complexity of the driver vehicle interface, predictability of vehicle’s action and reaction and others. Many different methods to evaluate the driver needs, benefits and acceptance exist and will be presented in this module.

Vehicle Traffic Interaction

This module extends the scope of green mobility to the perspective of multiple cars interacting on the road and with traffic-related infrastructure. Cars will become able to perceive their environment and react autonomously to reduce the risk of accidents, to improve driving efficiency and comfort. Autonomous driving has the potential to improve traffic flow, reduce traffic congestions and save energy. Enhanced traffic management systems will increase the ability of the driver to interact with the car and the surrounding traffic.

This module introduces technologies for vehicle perception based on lidar, radar and visual camera sensors. The interpretation of the sensor signals to obtain a consistent model of the environment is demonstrated. Latest developments of car-to-x-communication systems are presented and improvements in safety and traffic flow are discussed. Finally, models of traffic flow and traffic management are introduced. Traffic demand modeling as a core concept for modern traffic management is included in this module.

Regulations & Economics of Networks

Developing future “Green Mobility” products requires advanced technologies and production systems as well as an understanding of demand and supply in transportation markets. Those factors are boundary conditions for the successful implementation of future mobility systems.

This module introduces lightweight strategies and methods of manufacturing as well as production systems for e-mobility. Key aspects of electric energy distribution systems and management are addressed. Students are enabled to evaluate vehicle concepts based on total cost of ownership and well-to-wheel CO₂-emission scenarios. Transportation markets and their specific mechanisms, trends in travelling demand and economy as well as political regulations are further topics. Students are enabled to analyze market opportunities for future projects.

Overview Engineering Modules (EM)*

EM 1: ICE, Power Train & Energy Storage

Courses: Introduction into requirements, solutions and challenges in green mobility • Advanced Green Combustion Engines/ Bio Fuels • Energy-Storage: Batteries, Fuel Cells, H₂ • Energy Output • Energy Conversion • Automotive Control Systems

EM 2: Electric Power Train

Courses: Selected topics of Electrical Engineering • Electro Engines • Power Electronics • Energy Conversion • Automotive Control Systems

EM 3: Vehicle Driver Interaction

Courses: Drivability • Noise, Vibration & Harshness (NVH) • Driver Assistant Systems • Technical Cognitive Systems • Human Factors Engineering

EM 4: Vehicle Traffic Interaction

Courses: Perception of Environment • Auto-Control Systems • Traffic Engineering & Control • Automotive Radar Technology • Car-to-X Communication Systems

EM 5: Success Factors of Green Mobility

Courses: Light-Weight Construction and High-Performance Fiber • Production Systems for e-Mobility • Energy Distribution • CO₂-Balances: well to wheel • Transportation Markets and Policy